Accuracy assessment of a photogrammetric UAV block by using different software and adopting diverse processing strategies

V. Casella¹, F. Chiabrando², Marica Franzini¹, A.M. Manzino³

¹ Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy

- ² Department of Architecture and Design, Polytechnic of Turin, Turin, Italy
- ³ Department of Environment, Land and Infrastructure Engineering, Polytechnic of Turin, Turin, Italy

Focus

- Accuracy assessment of a photogrammetric block acquired by UAV
- > Two main aspects:
- 1. The performance of different software
- 2. The influence of processing strategies

Outline

- > Description of test-site
- > Description of photogrammetric dataset
- > Data processing and analysis
- > Results
- > Conclusions and further activities

Test-site

- > A part of a large sandpit
- Two flat regions connected by the excavation front (10 m high)
- > Slope between 30° and 90°
- > 2 ha

Dataset

- Hexacopter having 1.5 kg of payload and 15 minutes of autonomy
- Sony A6000 camera (24 MP, 16mm focal length)
- > 18 mm GSD at 70 m
- > 18 artificial markers
- Integrated survey with total station and GNSS receiver
- > 0.5 cm precision in planimetry
- > 1 cm precision in altimetry

UAV blocks

End-lap: 77% Side-lap: 60%

Block 1	North-South linear strips, 70 m, nadiral
Block 2	East-West linear strips, 70 m, nadiral
Block 3	Radial linear strips, 70 m, nadiral
Block 4	Radial linear strips, 70 m, 30° oblique
Block 5	Circular trajectory, 30 m, 45° oblique
Block 6	North-South linear strips, 40 m, nadiral
Block 7	East-West linear strips, 40 m, nadiral
Block 8	Radial linear strips, 40 m, nadiral

Data processing

- > The same dataset was processed by the two groups
- > University of Pavia:
 - > Agisoft Photoscan
 - > Inpho UAS Master
- > Polytechnic of Turin:
 - > Pix4D
 - > Bentley ContextCapture
 - > MicMac

Data processing

- > Number and distribution of GCPs/CPs were discussed in advance
- > Three configurations were established:
 - > 18 GCPs / 0 CPs
 - > 11 GCPs / 7 CPs
 - > 6 GCPs / 12 CPs

Configuration 1

 > 18 GCPs / 0 CPs
> all the markers are used as GCPs, to perform robust camera calibration

Configuration 2

> 11 GCPs / 7 CPs

 intermediate setup with strong ground control and still some check points

Configuration 3

 > 6 GCPs / 12 CPs
> only 6 points are used as GCPs, that is realistic for routine surveying

Processing and analysis

- > The photogrammetric processing were managed independently by the two groups:
 - > image alignment
 - > camera calibration
 - > adjustment weighting
- Residuals between the photogrammetrically-obtained objectcoordinates of markers and those determined by surveying were formed and compared

A

Some common points

- Extraction of tie points on high resolution images (Photoscan, UAS Master, Pix4D, Context Capture)
- Markers were measured independently but using a conservative strategy: average number of measurements per marker between 15 and 18 (exception 26 for Pix4D)
- > GCPs weight set to:
 - > 0.5 cm for planimetry
 - > 1 cm for altimetry

Agisoft Photoscan

- Image coordinates weights set 0.25 pixel for GCPs and 1.5 for tie points
- > Interior camera parameters optimization set to default

Photoscan		GCP			СР		
		X [m]	Y [m]	Z [m]	X [m]	Y [m]	Z [m]
Config 1	rmse	0.003	0.003	0.009	-	-	-
Config 2	rmse	0.003	0.003	0.009	0.004	0.005	0.013
Config 3	rmse	0.001	0.004	0.006	0.004	0.006	0.017

Inpho UAS Master

- > Needs approximate external orientations
- > Doesn't allow to set weight for image coordinates

UAS Master		GCP			СР		
		X [m]	Y [m]	Z [m]	X [m]	Y [m]	Z [m]
Config 1	rmse	0.003	0.002	0.008	-	-	-
Config 2	rmse	0.003	0.003	0.008	0.007	0.004	0.020
Config 3	rmse	0.007	0.005	0.015	0.005	0.004	0.024

Pix4D

- > Less flexible in which interior parameter optimize
- > Doesn't allow to set weight for image coordinates

Pix4D		GCP			СР		
		X [m]	Y [m]	Z [m]	X [m]	Y [m]	Z [m]
Config 1	rmse	0.004	0.005	0.010	-	-	-
Config 2	rmse	0.004	0.005	0.008	0.005	0.007	0.015
Config 3	rmse	0.004	0.008	0.008	0.005	0.005	0.014

Bentley ContextCapture

- > Less flexible in which interior parameter optimize
- > Doesn't allow to set weight for image coordinates

ContextCapture		GCP			СР		
		X [m]	Y [m]	Z [m]	X [m]	Y [m]	Z [m]
Config 1	rmse	0.004	0.004	0.009	-	-	-
Config 2	rmse	0.005	0.004	0.009	0.009	0.007	0.012
Config 3	rmse	0.008	0.005	0.029	0.011	0.007	0.042

MicMac

- > Images were resampled at 1500 pixels
- > Fraser camera model
- > GCPs weight set to 1 cm for planimetry and altimetry
- > Manually measured image coordinates weight set to 0.5 pixel

MicMac		GCP			СР		
		X [m]	Y [m]	Z [m]	X [m]	Y [m]	Z [m]
Config 1	rmse	0.002	0.002	0.002	-	-	-
Config 2	rmse	0.005	0.006	0.011	0.008	0.012	0.096
Config 3	rmse	0.003	0.005	0.012	0.015	0.017	0.106

- Horizontal components always perform better than Z
- Only exception is MicMac in Configuration 1

- > BBA estimates exterior orientation parameters in order to reach best fitting between photogrammetric and topographic GCPs coordinates
 > Accuracy figures for GCPs underestimate actual ones
- Differences between GCPs and CPs results are less evident than expected

- Number of GCPs influences the results that in general remain good
- ContextCapture has a significant degradation passing from Config 2 to 3 in Z component
- MicMac has large problem in altimetry probably connected to camera model

- Remembering that GSD is 1.8 cm, results are good for three software:
 - > Less 1 GSD in planimetry
 - > 1.3 GSD at worst in altimetry
- ContextCapture presents larger value in Z component of Config3
- MicMac needs new camera calibration strategy

Conclusions

- > Photoscan, Pix4D and UAS Master showed good results:
 - > Less 1 GSD for planimetry
 - > Less 1.5 GSD for altimetry
- > Context Capture
 - > Similar for planimetry
 - > Worst in altimetry
- > MicMac
 - Large anomalies in altimetric component probably connected to camera calibration
- > Decreasing of GCPs influenced more the last two

Further activities

- > Influence of oblique imagery on BBA results
- Influence of BBA results and block structure on dense point clouds generation
- > Quality will be evaluate:
 - > In terms of density, comparing flat and scarp areas
 - In terms of accuracy, assessing the clouds with several check points (already measured)

Thank you!

Marica Franzini marica.franzini@unipv.it

